
Figure 1 - Using a ruler to measure lengths and areas.

 Deck of Cards

Cub Lecture 2 - Understanding Sliding Friction

Sliding friction is the resistance an object has to being moved when you try to slide it across the
surface of another object.  In this lecture/quiz we will look at experiments demonstrating
friction by sometimes repeating parts of the experiment and gradually increasing the required
level of understanding.  So if we go too slow for you, bear with us, others may not be so sharp.

Distance and areas

Have a look at Figure 1. At
the bottom left, inset a, we
see a ruler marked off in
fractions of an inch, a part of
the old English units system.
The smallest length we see is
1/16 in (“in” is short for inch,
with the period after the
abbreviation removed so as
not to be confused with a
decimal point). See the
question mark ? between the
1/4 in and the ½ in mark ?
Circle the correct answer
letter on this question 1:
a 3/16
b 3/8
c 5/16
d 9/8
e 7/16

At the top left, inset b, is a
rectangular block about the
size of a deck of cards.  Its sides are surfaces
called areas, and each area has a length and
a width. To get areas you multiply length
times width. A piece of the largest block
side, shown in white, with length 1 in and
width 1 in would have an area of 1 in x 1 in
= (1 x 1) x (in x in) = 1 in2. So when you
multiply distances to get areas, you need to
first multiply the numbers, then the units,
getting one square inch where the square
may be written as a 2 in the superscript
(smaller, higher, and to the right) position.

In Fig 1b, circle the correct answer letter for
the area of the block’s entire largest side as:

question 2:
  a 10 in2

  b 12 in
  c 12 in2

  d 5/16 in
  e 14 in2

Oh yes, you may print this lecture/quiz on
paper, but for your use only because it’s
copyrighted.  Print out the answer sheet Word
document to keep track of your answers.
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Figure 2 - Decimal equivalents
to fractions and rounded values.

The English units can give us calculation problems because
they are fractions, which means something (numerator)
divided by something (denominator).  And if you’re like me,
you hate to multiply and divide or even add and subtract
fractions.  Lets go ahead and do the division
once and for all so we can just use the
quotients, called decimal equivalents.
Figure 2 shows these decimal equivalents in
the center column.  Grab your calculator and
check a few of these. For 5/16, enter a 5, hit
the divide key and then enter 16 and hit the
= key.  You will get 0.3125.  Now just .3125 is also correct,
but the decimal point (a period) is pretty small, so if you are
reading fast or in a hurry, you may miss seeing the decimal.
Thus, you may think 3125, which is a big number.  For
decimal numbers less than 1, engineers and scientists have
gotten into the habit of putting a "0" to the left of the
decimal.  It doesn’t change the value of the small decimal
number, and it’s a lot bigger than just a ".", and thus the
leading "0" means that, “Hey!”, there’s a "." following me,
so don’t miss it (or you could be three thousand times too
big).  Sometimes it doesn’t matter, but say a big mouse
jumped on your head that weighed about a third (.3333) of
a pound, so this would be a lot easier on you than a 3333
pound mouse landing on your head. So let’s make that
mouse weigh in at precisely 0.3333 lbs.

When we start measuring something here in a moment with the ruler, remember our eyes are
just so good.  Look at the edge of one of the playing cards.  The thickness of this card is about
0.010 in.  This is read as one ten thousandths of an inch or one hundredth of an inch.  The
whole stack of 52 cards is just over ½ in = 0.5 in, and 52 x 0.010 = 0.52 in.  Thus, about one
hundredth of an inch is about as small as we can readily see.  Our eyes would need help, with
a magnifying glass or a micrometer caliper, to see only one or 2 thousandths of an inch like
the thickness of a sheet of ordinary paper.  So lets just get rid of all the decimal places that
are less than the hundredths place.  Notice in Figure 2 the rightmost column has only two
decimal places.  Also notice that we didn’t just throw away the 3rd and 4th decimal place
numbers of the center column.  If the 3rd place number was smaller than 5, we threw it and
any 4th number following away.  But if it was 5 or larger, we made the 2nd place number go
up one.  This is called rounding to the hundredth place.  Now the numbers like 0.0625 aren’t
wrong, but they are misleading if we report them!   Because writing down 0.0625 inch implies
that we can actually see that well, but with our unaided eyes the 3rd and 4th places are just not
significant.  So the rightmost column figures are all now significant to the 2nd place.
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Figure 3 - Remember, numerical significant
figures are what we can see are really there,
no more, no less.

A number like 0.5 is not significant to the 2nd decimal place because it has no second decimal
place.  If we can see something to within a hundredth of an inch, then we should report it, so
we should write it as 0.50 inch unless we see the measurement might be somewhat smaller
than ½ inch as in 0.49 inch or somewhat larger as in 0.51 inch. 

This brings us to question 3.  How many of
the 16 numbers in the center column of Fig 2
are significant to the 2nd decimal place?

question 3:
a none
b one
c two
d three
e four

The Scientific Method

We will used a procedure called the Scientific
Method to determine how sliding friction affects things.  A detailed version is in Lecture 3.

In the Scientific Method  (hypothesis first): 

First, we guess how something is supposed to act based
on just thinking about it, or perhaps on our experience
sometimes called  “common sense”.  This guess is then
stated as a “hypothesis” which means something we think
will happen but will nevertheless need to be proved or
disproved through observation and experiment. 

Second, the scientific part means the “method” must be based on gathering real evidence that
can be subjected to specific principles of reasoning, usually through the logic of mathematics.
So our reasoning could use calculations, like algebra, or proofs, like in geometry.

So lets think about things sliding.  Your shoe sole sliding across a tile floor might offer quite
some resistance, but if you were walking on wet ice, the resistance could be much less.
Offhand you might think “Well, if I drag something of a certain area across a flat surface,
then its bottom area rubbing on top of the flat surface will cause some sort of resistance.
Likely large if the surface is rubber and likely a smaller resistance if the surfaces are wet.
And, most people would agree, if there is more surface involved in the sliding, then the
resistance to the sliding must be more.
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Figure 4 - Pulling on a cabinet to make it slide across the floor, large area a small area b. 
But look at Figure 4. Suppose  you were trying to pull a flat-bottomed filing cabinet A over a
floor B covered by a smooth non-skid surface (like the rubberized paint for a pickup truck bed).
If the filing cabinet weighed 100 lbs, you might have to pull with a horizontal force of 100 lbs
as in b to get it to slide.  If the cabinet were put on its side as in a, a much larger area would be
in contact with the floor, and you might think it would take more pulling force.  After all, the
friction comes from the object’s bottom surface sliding on the floor, so for more bottom surface,
the harder it should be to slide.  Thus, the frictional drag would be more. For a hypothesis we
might have (as a lot of people believe):

Hypothesis 1:
The frictional drag force experienced when one object slides on another increases as the
contact area increases, even if the weight of the sliding object stays the same.

Measuring Areas

Let’s measure the areas of the sides of the playing card boxes.  We have 3 sides, a large,
medium, and small.  Unlike the block example in Figure 1b, the card deck is not whole
inches.  I’ll measure the large area of a card deck as an example, using a space to separate the
whole number from the fractions.  A(large) will represent the Area of the largest side.

A(large)  =    2  1/2  in  x     3  7/16 in  =     2.50   in x   3.44   in  =   8.60   in2.
 
Now you measure the areas of the other smaller sides, called the medium and small areas.

A(medium) =_______ in x _______ in  = _____ _in x ______ in  = ______ in2.

A(small) =_______ in x _______ in  = _____ _in x ______ in  = ______ in2.

In Fig 1b, the block would give  A(medium) = 4.00 in2  and  A(small) = 3.00 in2

(Notice everything is to 2 significant decimal places)
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Figure 5 - Tape the rubber band to within 1/8 inch
of the deck bottom, so it’s not rubbing on the table
when the deck is pulled horizontal as in Fig 6.

question 4: Your  A(medium) is between which of the following two in2 numbers, where <
means the number to the left is less than the number to the right, e.g., 1.50 < 2.05 < 2.75 ?
a 0 < A(medium) < 1.19
b 1.20 < A(medium) < 2.19
c 2.20 < A(medium) < 3.19
d 3.20 < A(medium) < 4.19
e 4.20 < A(medium) < 5.19

question 5: Your measure of A(small) is between which of the following two in2 numbers:
a 0 < A(small) < 1.19
b 1.20 < A(small) < 2.19
c 2.20 < A(small) < 3.19
d 3.20 < A(small) < 4.19 
e 4.20 < A(small) < 5.19

Dragging the full card deck boxes (sometimes called just “deck”)

Tape the corners of a plain white piece of ordinary computer printer paper onto a table or
cabinet top.  Then cut the loop of a No 19 rubber band.  Tie a basic overhand knot and pull
it tight, making two knots close to opposite ends of the rubber band.  This  makes it easier to
handle.  You may use a new unopened deck with a clear cellophane-like covering, or an
opened deck will be OK if it’s not too used.   Now tape one end of the rubber band as shown
at the end of the deck as in Figure 5.  The rubber band will stretch as we apply a force. We
will assume  that if we double a force we will double the amount of stretching of the rubber
band.  This is pretty close, but a fine-
wound tension spring would be used for
really precise force measurements.

Now the next step is shown in Figure 6.
We are going to slide the deck on it’s
A(large) surface.  Pull the rubber band to
the right until it just lifts from the sheet of
paper you taped on the table top. Figure
6 shows the rubber band being pinched at
4 in just as the rubber band has cleared
the paper sheet.  Then pull slowly to the
right until the deck slides forward.  At this
exact time note where your thumbnail is
next to the ruler.  Do this 3 times, making
a note of the distance each time, such  as:
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Figure 6 - Pulling the large area with a No 19
rubber band starting at 4 in. and measure
distance over 4 in for a deck slide to start. Do it
3 times. Keep rubber band parallel to paper as
you pull. 

Figure 7 - Pulling the medium area and getting
the average of 3 “stretch” measurements. Pinch
thumbnail at 4 in just as rubber band lifts clear of
paper,

Figure 8 - Pulling the small area and getting the
average of 3 measurements. Rubber band here
may be just a hair too loose.

1. DistLargeArea  =      0.94      in
2. DistLargeArea  =      1.06      in
3. DistLargeArea  =      0.81      in
AvgDistLargeArea   =    0.94      in

The distance to start a deck slide might be
4  15/16 in, so if you start at 4 in, the 1st

stretch distance is 4 15/16 - 4.00 =15/16 in
net stretch.  Figure 2 tells us this is 0.94 in.
Suppose the second time your stretch the
rubber band you get 1 1/16 in, and the 3rd is
13/16 in. Convert to decimals, add all 3
numbers, divide by 3, and you have the
average stretch for DistLargeArea .

question 6: For an average DistLargeArea , what is your net stretch distance, in inches?

a  0.20 < AvgDistLargeArea < 0.59
b 0.60 < AvgDistLargeArea < 1.19
c 1.20 <AvgDistLargeArea  < 1.59
d 1.60 <AvgDistLargeArea  <2.19
e 2.20 <AvgDistLargeArea  < 2.59

question 7: For an average Distance
Medium Area, what is your net stretch
distance, in inches?

a  0.20 < AvgDistMediumArea < 0.59
b  0.60 < AvgDistMediumArea < 1.19
c  1.20 <AvgDistMediumArea  < 1.59
d  1.60 <AvgDistMediumArea  <2.19
e  2.20 <AvgDistMediumArea  < 2.59

question 8: What is your Average Distance
Small Area stretch, in inches?

a  0.20 < AvgDistSmallArea < 0.59
b  0.60 < AvgDistSmallArea < 1.19
c  1.20 <AvgDistLargeArea  < 1.59
d  1.60 <AvgDistLargeArea  <2.19
e  2.20 <AvgDistLargeArea  < 2.59
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Figure 10 - Pinch the rubber
band on the 1 in mark and
raise the ruler until the deck
starts to raise. Here the deck
bottom has just cleared the
bench top. Note the stretch
distance on the ruler. Make
sure the rubber band is a # 19.

Figure 9 - Prepare to weigh by taping to the
deck small area center, set the deck top on 5 in
mark, and tape the rubber band top at 1 in.

Now comes the big question 9.  The areas which you were sliding on the sheet of paper
changed a lot if you were careful with your edge measurements.

question 9:  So, did your force as measured by the rubber band stretch change a lot as well?
a  The force to cause sliding, the stretch distance, was about the same for all 3 areas
b  The forces to cause sliding were about 4 times greater for the large area than the other areas
c  The forces to cause sliding were about 2 times greater for the large area than the other areas
d  The sliding forces were about 2 times smaller for the large area than the other areas
e  The sliding forces were about 2 times greater for the medium area than the other areas

question 10: Based on your answer to question 9, is the hypothesis 1 on p 4 correct? 
a Yes, it agrees with experiment, and perhaps should be part of a physics law
b No, it does not agree with experiment, and its opposite should be part of a physics law 
c Sometimes
d Can’t tell, not enough experiments were done
e I’m not sure, but seems like a yes, or perhaps it could be a no

Lets look at weight

We need to measure the force on the solid mass that gravity
causes. This force is its weight. As in Fig 9, tape the small area
so the rubber band will pull from the center, not 1/8 in from an
edge.  Lay the deck on the ruler with its top at the 5-in mark.
Pinch with your thumb at the 1-in mark so the rubber band part
under the tape can’t stretch.  Then lift the ruler as in Fig 10 until
the deck clears the bench top supported only by the rubber
band.  Make sure the band doesn’t stretch under the tape.

question 11: The rubber band stretched how much to support
the weight of the deck? If its top was at 10 in, in Fig 10, then
10 - 5 = 5 in stretch on the rubber band. Circle what you got
closest  to:

a   4.00 in
b   4.50 in
c   5.00 in
d   5.50 in
e   6.00 in
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Figure 11 - The forces on the deck sliding horizontally

Figure 12 - Deck on an an incline.

The coefficient of friction

The coefficient of friction is the
force required to slide a smooth
object over a smooth surface
divided by the perpendicular
force on the object.  See Figure
11. Here we let the symbol FN
stand for Normal Force,
meaning the force on the deck
perpendicular to the paper
surface. With a horizontal paper surface, this normal force is also the Weight Force FW .  FD
is the Drag Force required to slide the deck parallel to the surface. The coefficient of friction
is represented in physics by the Greek letter  µ, pronounced “mew”.  So µ is defined as:

µ   =                     (Eq.1)

Remember when I got 0.94 in for the drag force sliding the large area? And I got 5.00 in for
the deck weight force also as measured in “inch stretch units”?  So I would get for µ
 
µ   =                  =              =  0.19   

Notice that the “in” cancels out since both the numerator and denominator have it.  So it
doesn’t matter what force units you use because  as long as you keep them the same they will
cancel. So µ has no units.  Your calculator will give 0.188 but because we’re putting into the
calculator  numbers that are only accurate (significant) to 2 decimal places the answer is only
good to 2 decimal places as well.  Remember with computers (and calculators) the old saying
about “garbage in, then garbage out”.  So we should round off 0.188 to 0.19.

Put your answer from question 6 into the calculator and divide by the number you got to
answer question 11. Then answer question 12 below: Note you may get an answer
somewhat different from µ   = 0.19. That’s OK. Your paper could be a little different, your
card deck could have a different finish, you may have higher or lower humidity, etc. 
question 12: Your µ is closest to:   a  0.10     b  0.15     c  0.20     d  0.25     e  0.30

 More sliding friction

You don’t have to do this experiment as a yard-
stick wasn’t on the equipment list, so there will
be no questions.  But please slide your deck on
paper or on anything at an angle just for fun.
Tape a sheet of paper to a yardstick as shown in
Fig 12.  Place a deck of cards on the paper. 

FD

FW

0.94 in
5.00 in

0.94
5.00
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Figure 13 - The forces on the deck when sliding down an inclined plane.

Figure 14 - Measure RISE at HYP = 24 in

Raise the left end of the yardstick while holding the
12 in ruler perpendicular to the table at the 24 in
mark on the yardstick. Raise the left end of the
yardstick until a deck of cards will just begin to slide
down the paper.  Video 1 shows the deck sliding at
a certain angle.  Figure 13 shows what’s going on.
Instead of the full weight force, FW, being normal to
the surface, this time we have FW split into two
forces, FN normal and FD trying to slide the deck.
Look at insert b. The drag force FD might as well be
pulling along the surface at the center point P of the
deck since the deck is a rigid body. This gives the
shaded force trian-
gle b. Now flip b
over and rotate it
and put it at posi-
tion c. These force
arrows are called
vectors and have
both a length and a
direction. You can
break up FW into
FD and FN using
that old Greek fel-
low, Pythagorus’,
theorem. Because
the c triangle is a
right triangle with
angles like in a, triangle c forces are proportional to
triangle a sides. We can use Eq. 1 to get the coeffi-
cient of friction which turns out to be RISE/RUN.

Figure 14 shows that RISE = 4  9/16 = 4.56 in. 
Pythagorus says RUN2 = HYP2  - RISE2 ,  so RUN
is square root of (24.002 - 4.562) = 23.56. Thus,

µ   =            =              =              =  0.19

It’s pretty cool when another method gives the
same value for the coefficient of friction.

FD

FN

RISE
RUN

4.56
23.56

Video 1. Click left to see deck slide
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Figure 15 - Slide two decks.

Increase and decrease deck weights

My experience leads me to suppose that if the
vertical force of gravity is doubled, then the
force required to slide it across a surface will
go up.  How much?  Lets suppose further that
the frictional drag force itself is also doubled,
so that:

Hypothesis 2:

The frictional drag force experienced when
one object slides on another increases
proportionally as the perpendicular force exerted by the sliding object increases.

So, do as you did in Figure 6 and question 6, except here add the second deck on top of the
first deck and again stretch the 4 in length of No 19 rubber band until the doubled deck slides.
See in Figure 15 that the rubber band is attached to the bottom deck just as in Figure 6.
Notice my left finger is poised over the decks.  You should tap gently on the top deck as you
stretch the rubber band. This is because as weight force goes up, there is an adhesive force
that builds up between surfaces when objects are stationary.  It’s sort of like a little bit of
sticky material is present between the bottom surface and the sheet of paper.  Now once
sliding starts, this adhesive force goes away.  As a result, the force it takes to start sliding may
be a little more than the force required to sustain sliding. 
A couple of definitions are helpful here:
Kinetic - Based on a Greek word that means having motion.
Static - Based on a Greek word that means not having motion.
Thus, the friction to start sliding is measured by a static coefficient of friction, and the force
to sustain sliding is measured by the kinetic coefficient of friction.  When you have just the
weight of one deck, the static and kinetic friction coefficients are pretty close.  But as the
weight increases the normal force, a little tap is needed to jiggle those molecules on the
bottom deck that are touching the molecules on the surface of the paper.  This keeps the
molecules from getting entangled and causing the extra static adhesive force. 

question 13: The amount of rubber band stretching required to slide (with tapping) 2 decks
compared to your amount in question 6 was
a  about the same
b  about half as much
c  about twice as much
d  about 3 times as much
e  the rubber band broke



Cub Lecture 2 11

Figure 16 - Slide one card

Figure 17 - The drag force to slide a smooth object
over another. FN and FD Units are Deck Weight.

This next experiment may seem kind of silly.
But, sometimes being silly is fun, and we are all
for having fun!  Try to drag only one card with
the rubber band,  as in Figure 16, and you see
the card slide before you can even straighten
the rubber band.  The card weight is tiny, less
than 2 hundredths the weight of the whole deck
and its box (The amazing thing is, if you do
like Video 1, one card slides at the same angle
as the whole deck slid, meaning µ hasn’t
changed although weight went up x 52).

Lets see how small a card weight is significant. I have in my lab an electronic digital scale
that is accurate to 0.001 grams.  The deck  plus box weighs 87.498 grams and 1 card weighs
1.549 grams, only 0.018 times as much (the calculator gives 0.017703261 but remember the
digital scale accuracy is only accurate  to the 3rd decimal place so round off to 0.018). Thus,
our FW went down from 1.00 deck to 0.018 deck.  This is pretty close to the 0.01 we had been
using as the least significant figure length measurements.  Also, the drag needed to pull the
card would be even smaller than 0.018 of a deck weight. So within our measurement accuracy
we can reliably say both FN ( = FW ) and  FD are close to zero for just 1 card sliding.

Let’s make a physics law

Look at Figure 17. In the graph the
normal force FN is the deck weight, and
FD is how much force, or decimal
fraction of the deck weight, is needed to
slide it across paper.  We just discussed
the near zero point, and earlier we got FD
= 0.19 for FN = 1.00 deck force, and I got
about double this for FN = 2.00 deck
forces.  The slope of the line, which is
the “rise” over the “run”, is the unchanging coefficient of friction µ.  It looks like hypothesis
2 is correct, and we have a  
Law of Sliding Friction - The drag force to slide a smooth object over another is proportional to
the normal force that the sliding object exerts on the surface. The constant of proportionality is called
the coefficient of friction.
Moreover, the opposite of hypothesis 1 could be added to this law based on your experiments.
Law of Sliding Friction Corollary - The coefficient of friction, and frictional drag, is
independent of contact area in smooth sliding.

question 14: The filing cabinet in Figure 4b would have what for a coefficient of friction?
a   0.19  b   0.40 c   0.60  d   0.80  e   1.00



Cub Lecture 212

Figure 18 - Sliding the 2-inch nail on a
plastic strip 1/8 in wide and ½ in tall.

Figure 19 - Marking the roller.

Figure 20 - Start a 1 inch slide.

Figure 21 - Mark the end of the
1 inch slide.

Friction in wheels

We all love to roll toy cars, from a tiny tot age to
older folks that race in the WIRL.  Many wheels we
use, like on automobiles, have ball bearings (or roller
bearings) to really reduce energy lost through friction
because such bearings have no sliding surfaces.  The
simplest bearing, though, is called a journal bearing.
It’s just a cylindrical axle, the journal, inserted into a
cylindrical bore hole in the center of the wheel.  Some
journal axles, like on railroad cars, are cast as part of
the wheel pair,  and the cylindrical opening in which
the axle rests is made inside a “box” casting.  In the
pinewood derby journal bearing, the old wagon-type simple
fixed axle slides-inside-rotating-wheel bore is used.

In Figure 18, I hold the 2 in nail on top of a strip of plastic
and push down as I rub the nail forward for 1 in on top of
the plastic (You don’t have to do this, but if you do, you can
slide the nail down the length of a plastic ball point pen
instead of a flat piece of plastic).  I made the inch marks on
the paper sheet with the ruler then removed the ruler so my
fingers wouldn’t bump it.  Suppose I push down with a 1.00
ounce force (ozF), which is about 1/4 the weight force of a
pinewood derby car body.  And, lets suppose the coefficient
of friction for steel (the nail) sliding on plastic is 0.30 (it is).
So the drag force as I slide the axle 1.00 inch is 0.30 ozF.
Now get this very important definition:

The kinetic energy (KE) involved in motion is the force
causing the motion times the distance through which such
force acts. Thus, the kinetic energy lost to friction is:

KE =  (1.00 in) x (0.30 ozF)  = 0.30 in ozF        (Eq. 2)

Now make a mark with the pen on the inside of the white plastic
roller as in Figure 19.  As in Figure 20, slide the axle forward
as you push down with, play like, 1.00 ozF of force.  Slide the
axle so it’s right over the 1 in mark and make a 2nd mark inside
the roller where the axle ended up as in Figure 21.  Notice as the
axle slides forward the roller bottom rolls along the surface, sort
of a inner slide/outer roll combination.
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Figure 22 - Measuring roller
ID as 1.02 in.

Figure 23 - Marking the
roller inside for rolling an
entire roll of tape 1 in.

The curved distance between the marks inside the roller is called
an arc distance.  It looks to me to be about 3/4 in straight
distance.  I’ll give you a hand in measuring this arc distance by
first measuring the roller inside diameter (ID) with precision
digital calipers as shown in Figure 22. I get 1.0245 in which
rounds off to 1.02 in. Now you can measure the outside diameter
(OD) of the roller with the ruler and get the number:

OD = ___________ in        Then consider these relations:

       =                 =                      

INNER ARC DIST = OUTER ARC DIST x 

INNER ARC DIST = 1.00 in x                 (Plug in your OD distance in inches here)

In the calculations above, recall the curved distance is called arc distance, and the inner arc
distance always has the same ratio to its outer arc distance as the total inner circumference  has
to the total outer circumference.  Remember outer circumference = π OD in inches and the   π’
s and inches in the numerator and denominator cancel.  Also, the OUTER ARC DIST = how
far you rolled (without slipping or sliding) which was 1.00 inch (think about why this is).

question 15: Your number for the INNER ARC DIST, in inches, for the plastic roller is closest
to:
a   0.22      b   0.40     c   0.50    d   0.75     e   1.20

In Figure 23, roll a complete new tape roll of Scotch™ magic
tape as you just did using its inside plastic roller.  Measure its
outer diameter, OD, and use

INNER ARC DIST =  DIST ROLLED    x                  (Eq. 3)

to get the distance the nail axle rubbed in the inside hole, namely,
its INNER ARC DIST.

question 16: Your number for the INNER ARC DIST , in inches,
for the distance the nail rubbed the inside hole surface while
rolling the entire tape roll, is closest to:
a   0.22      b   0.40     c   0.50    d   0.75     e   1.20

INNER ARC DIST
OUTER ARC DIST

π ID
π OD

1.02
OD

1.02
OD

1.02
OD

1.02
OD



Cub Lecture 214

Figure 24 - Pinewood Derby car, 4 axles sliding
on plastic strips 1/8 in wide.

Remember, the kinetic energy lost to friction when the axle nail rubbed on straight plastic for
one inch nail travel, carrying a 1 ozF load was Eq. 2, which we repeat below:

KE =  (1.00 in) x (0.30 oz)  = 0.30 in ozF

Say we used a plastic roller that had an ID over OD ratio of 0.75?  Then when we pushed the
nail 1.00 inch, the distance the nail slid on plastic while loaded with 1.00 ozF weight would
be reduced, right?  Moreover, as in Eq. 3, we just showed that the inner circle arc distance
axle slide compared to the straight axle travel distance while rolling goes as the ratio:

So the KE lost to friction when the axle goes forward 1 inch while rolling for 1 inch is:

KE =  (1.00 in) x               x  (0.30 ozF)                   (Eq. 4)

question 17:  Use Eq. 4 to first calculate the KE lost to friction for the plastic roller rolled 1 inch,
followed by the KE lost for the whole roll of tape being rolled 1 inch.  The units are understood
to be in ozF.  Use the numbers you got for OD in questions 15 and 16, and use my ID = 1.02 in.
Pick the  numbers below closest to your numbers_________in ozF, ________in ozF:
a   0.15, 0.23
b   0.55, 0.50  
c    0.23, 0.15
d   0.75, 1.40     
e   012, 0.12

In what follows, watch photos of me
playing with a pinewood derby car body.
Look at Figure 24.  Assume the weight
pressing down on each of the four 2 in nail
axles is 1.00 ozF. 
question 18: How much KE is lost if all 4
nail axles are sliding 1 inch on plastic
instead of just 1 axle?  Units are in ozF.
(Hint, remember Eq. 2)
a   0.15
b   0.55  
c   0.23
d   0.75     
e   1.20
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Figure 25 - Pinewood Derby car, 4 axles sliding
on the inside of plastic rollers of Figure 21. 

Figure 26 - Here are 4 axles sliding on the inside
of the same rollers as Fig 25 but with a larger OD.

Figure 27 - Pinewood Derby car, 4 axles
sliding inside bores of regular 1999
wheels, ID = 0.096 in, OD = 1.195 in.

Look at Figure 25: How much KE is lost
if all 4 wheel axles are sliding in the inner
(ID) hole to roll each roller forward 1.00
inch? Units are in ozF.  Your calculation
gives  _________  in  ozF.
(Hint, remember Eq. 4)
question 19:  The number closest to yours
is:
a   0.55
b   0.35  
c   0.50
d   0.90     
e   1.40

Look at Figure 26:  How much KE is lost
if all 4 wheel axles are sliding in the inner
(ID) hole to roll each tape roll forward 1.00
inch?  Units are in ozF.  Your calculation
gives   _________  in ozF.
(Hint, remember Eq. 4)
question 20:  The number nearest yours is:
a   0.55
b   0.35  
c   0.50
d   0.15     
e   1.25

Look at Figure 27:  The wheels are painted white to
show up well.  We have switched the 2 in long nails
to regular PWD axles of the same diameter.
How much KE is lost if all 4 wheel axles are sliding
in the inner (ID) hole (called a bore hole) to roll the
body forward 1.00 inch? We will use Eq. 4, and
assume its numbers are good to 3 decimal places. The Wheel ID (bore diameter) = 0.096 in and
the OD = 1.195 in.   Units are in ozF.

KE = 4 x  (1.00 in) x                    x (0.30 ozF)  =    0.096 in ozF            

Before, (see Fig 24), with no wheels,
KE = 4 x  (1.00 in) x (0.30 oz) 
KE  = 1.20 in ozF.
So the wheels reduce sliding friction 
by 12.5 times, i.e., 1.20/0.096 = 12.5

0.096 in
1.195 in

Note: If the bore hole becomes very small as in Figure
27, and depending on how flat the supporting surface is,
one front wheel (if car rear is weighted) may hang from
the top of its axle. We are assuming this is not the case,
the support is perfectly flat, and all 4 axles are coplanar.
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The effect of friction on your race time

Now we have found how much KE is used in the sliding/rolling action of a PWD car as in
Figure 27, lets see how much that can slow us down getting to the finish line. Remember Eq.
4 below:

KE =  (1.00 in)  x               x  (0.30 ozF)                  (Eq. 4)

And remember the 0.30 ozF came from the perpendicular weight of 1 ozF (on one wheel) times
the coefficient of friction of plastic on steel, namely µ = 0.30.  Thus, the friction KE for going
distance S in forward travel for all 4 wheels is:

KE  = 4 x S x                x  µ x 1.00 ozF   (Eq. 5)

So lets see how much KE is used when the car rolls a distance S = 16 ft.  And let’s say we use
a good lubricant like oil (it doesn’t hurt the wheels) or graphite.  The lubricant could really
reduce the coefficient of friction, so make µ six times smaller at µ= 0.05. So Eq 5 becomes:

KE  = 4 x 16 ft  x                     x 0.05 x 1.00 ozF    

KE  = 4 x 16 ft  x  0.080 x 0.05 x 1.00 ozF

KE  = 4 x 16  x  0.080 x 0.05 x 1.00 ft ozF = 0.26 ft ozF

This is the energy lost to friction, but you may wonder how much velocity is changed?  And,
you may wonder, how much will this friction slow you down at the finish line?

Well, you’ve done enough work measuring the friction that a pinewood derby car might have,
so on the next page we’ll let your senior partner, or perhaps your science teacher, help out.
On this page, they perhaps can explain to you that your car, even with the very low µ =  0.05,
will still be about 1/3 of a car length behind a car with zero friction (on a 32 ft track).

Finally, after the next page, there comes the final exam for Pinewood Derby Car friction,
Lecture 2.  We will let you answer a few yes and no questions.  These questions are ones that
tend to confuse people when it comes to pinewood derby car friction. Remember your sliding
friction law and corollary.

Happy Racing !
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NOTE: The Cub or other youngster is not responsible for the contents of this box.  But it would be nice if
their senior partner could help in getting a few of the key concepts (bold) across to them.

First, lets get rid of the x every time we multiply things together. So if mass = M and velocity = V, then
mass times velocity is MV. Another way is to write it is use parenthesis to enclose the things being multiplied
together. So M x V = MV = (M)(V).  Occasionally, but rarely, a center dot “·” indicates multiply as in M x V
= M · V.  When units are multiplied together, like inches times ounces force, one could use the following:
 in-ozF   ;   in · ozF ;   in.ozF   ;  in ozF . We use the latter, with just a space separating the units symbols.

Second, we found the kinetic energy used in sliding friction was KEFRICTION =  0.26 ft ozF.  We want to
compare this against the kinetic energy of the whole PWD car, its energy of free motion, which is:

KEPWD = ½ MV2 This free motion will have less velocity if friction converts some of the energy to heat.

This kinetic energy depends directly on the actual mass in ounces, not the force with which gravity pulls down
on one ounce of mass, such force called ozF . Suppose the whole car, body plus wheels, has a mass of 5
ounces, where we use the symbol ozM to denote ounces meaning mass only.

When we push 5  ozM horizontally, like rolling a small 5 ozM bowling ball, it takes a certain horizontal force to
get it up to some velocity, regardless of what force gravity is pulling down with (i.e., the 5 ozF weight force). 

Third, we use Newton’s law of gravity, which relates just plain mass, 5 ozM , to the weight of such mass, 
5  ozF. This law says that weight force =  mass times the gravitational acceleration g. The gravitational
acceleration, g , on the earth, is 32 feet per second per second, where per second per second is s2 .

Thus  (0.26 ozF)  = ( 0.26 ozM)g  =   ( 0.26 ozM) = 8.32 ozM ft/s232ft
s 2

And, KEFRICTION  = 0.26 ft ozF = 8.32 ozM ft2 /s2

Fourth, lets play like the PWD car rolls down a ramp for 16 ft, and there isn’t any wheel friction on the ramp.
If the car starts at 4 ft above the coasting run, its velocity V after it has dropped H = 4 ft is:

V   =  =         =    =    16 ft/s (about 11 mph)

 
KEPWD = ½ MV2  =  (½)( 5 ozM )          =  640 ozM ft2 /s2         This is Kinetic Energy, no friction.

KENET =  KEPWD  - KEFRICTION   = ( 640 - 8) ozM ft2 /s2 = 632 ozM ft2 /s2     This is energy left after friction is
subtracted, where we rounded off 8.32 to just 8.  Friction energy goes into heat. The velocity after friction is:

V 2   =     =    , thus V = =  15.9 ft/s

Time difference =   =   1.0063 s   –  1.000 s   =  0.0063 s , (assume good timer),

 or about 1/6 car length difference* at the ramp end. Over a 32 ft track, we would have about 1/3 car length
difference at the finish line between a car with axle/wheel friction at µ = 0.05 and a perfect car with µ = 0.

*The time for a 7 inch car length to pass a line is 
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Figure 28 - Sliding 4 decks of cards separately
as done singly in Figure 6. 

Figure 29 - Moving the weight from the left rear
to double the right rear deck weight. 

Figure 30 - Pinewood Derby car, with an extra 
lead weight equally supported by rear wheels.

Figure 31 - Pinewood Derby car, lead weight
distribution moved closer to right rear wheel.

Figure 32 - Grooved axle

Final exam - Car weight distribution and axle surface area

We will use your experiments to let you
answer questions that confuse many PWD
racers. One question is how does the
frictional drag on a car change as the 5.00
ounces is redistributed among the wheels?

Remember when you pulled a deck of cards
with a rubber band to measure its sliding
friction force?  In Figure 28 we show 4
decks of cards connected to rubber bands.
So if you pull all 4 rubber bands at once, you
would be applying 4 times the amount of
force to cause sliding of one deck, right?

Now look at Figure 29. Remember Figure 15
and question 13? By putting the weight of the
deck of cards at the top left on top of the deck
at the bottom left we would double the force
needed on that rubber band, right?  So pulling
on this single rubber band and the 2 bands to
the right as before would lead to the same
total frictional drag as in Figure 28, right?

Next Figure 30 shows a PWD  car with a lead
weight centered and pushing down equally on
the 2 rear wheels. Is the total frictional drag
going to change if we take half the weight
from the left rear and put it on the right rear as
in Fig 31? question 21:   a Yes   b No

In Figure 28, would it take the same net
frictional force to slide all 208 cards
separately? question 22 :   a Yes   b No

In Figure 28 or 29, would it change net
frictional drag if decks were turned to reduce
contact area? question 23 :   a Yes   b No

In Figure 30, would it change net frictional drag on the car if axles were grooved, like Fig 32,
so less axle surface area was contacting the wheel bore surface? question 24 :   a Yes   b No


