$$
\begin{align*}
& \tan ^{-1}\left(\frac{v_{1}}{k}\right)-k C_{A} t=\cos ^{-1}\left\{e^{C_{A} x} \cos \left[\tan ^{-1}\left(\frac{v_{1}}{k}\right)\right]\right\} \tag{5,77}\\
& t=\frac{1}{k C_{A}}\left(\tan ^{-1}\left(\frac{v_{1}}{k}\right)-\cos ^{-1}\left\{e^{C_{A} x} \cos \left[\tan ^{-1}\left(\frac{v_{1}}{k}\right)\right]\right\}\right) \tag{5,78}\\
& t_{2}=\frac{1}{\sqrt{C_{F} C_{A}}}\left(\tan ^{-1}\left(\sqrt{\frac{C_{A}}{C_{F}}} v_{1}\right)-\cos ^{-1}\left\{e^{C_{A} s_{H}} \cos \left[\tan ^{-1}\left(\sqrt{\frac{C_{A}}{C_{F}}} v_{1}\right)\right]\right\}\right) . \tag{5,79}
\end{align*}
$$

Note that ($5,76 \mathrm{~A}$) actually allows 4 relationships using various positive or negative cosine arguments since the cosine is an even function. We choose the form $(5,76 \mathrm{~B})$ so the time will come out positive and $(5,79)$ will show the proper boundary behavior as C_{A} and C_{F} are varied. Equation (5,79) is the solution to the horizontal motion. It applies to the inclined plane ramp as well as to the circular arc ramp although v_{1} will be different in the two cases. It will be shown in the next chapter that v_{1} derived as in the last section is within 0.026% of the exact value for the circular arc case. Because the mathematical form of $(5,79)$ is analytic, and because t_{2} is still approximately inversely proportional to v_{1}, then 0.026% also represents the mathematical accuracy of $(5,79)$ in representing t_{2} for the circular arc case.

Equation (5,78) is complex enough that it should be checked further. We shall examine its behavior for three conditions,

1) $x \rightarrow 0$
2) $C_{F} \rightarrow 0 \quad$ zero wheel/axle friction, only air resistance
3) $C_{A} \rightarrow 0 \quad$ zero air resistance, only wheel/axle friction.

For condition 1), we can see that as x approaches zero the exponential term goes to 1 and the arctan functions cancel giving $t=0$. For condition 2), we write ($5,76 \mathrm{~B}$) as follows:

$$
\begin{align*}
& \cos \left[\tan ^{-1}\left(\frac{v_{1}}{k}\right)\right] e^{C_{A} x}=\cos \left(k C_{A} t\right) \cos \left[\tan ^{-1}\left(\frac{v_{1}}{k}\right)\right]+\sin \left(k C_{A} t\right) \sin \left[\tan ^{-1}\left(\frac{v_{1}}{k}\right)\right] \tag{5,80}\\
& e^{C_{A} x}=\cos \left(k C_{A} t\right)+\sin \left(k C_{A} t\right) \frac{\sin \left[\tan ^{-1}\left(\frac{v_{1}}{k}\right)\right]}{\cos \left[\tan ^{-1}\left(\frac{v_{1}}{k}\right)\right]} \tag{5,81}\\
& e^{C_{A} x}=\cos \left(k C_{A} t\right)+\sin \left(k C_{A} t\right) \tan \left[\tan ^{-1}\left(\frac{v_{1}}{k}\right)\right] \\
& e^{C_{A} x}=\cos \left(k C_{A} t\right)+\frac{v_{1}}{k} \sin \left(k C_{A} t\right) \tag{5,82}
\end{align*}
$$

