
Fig 1 - MY_CAR parameters that come with the VR.
Rename as MY_CAR-4 and save.

Fig 2 - MY_CAR-3 is created with NK = 3.  

Physics Lecture 25 - Are 3 Wheels Rolling Really Faster than 4 Rolling?

Introduction

The short answer is “sometimes”. Again, we have here an opportunity for the VR-II to teach some fundamental
Pinewood Derby physics. In the previous Lecture 24, we saw the effects of center of mass placement on both the
inclined plane ramp track and the curved or sagging circular arc ramp track. And, we also saw how even a slight
amount of air resistance could have an impact on which car had the best finish time.  In this lecture, we will show
some previously unappreciated detail on how the wheel moment of inertia can impact finish times. For identical
wheels, when 4 are rolling you will have a factor of 4/3 or 33% more wheel rotational energy than with just 3
wheels rolling. Remember, moment of inertia is to a rotating body what inertial mass is to a body traveling in a
translational (zero rotation) trajectory. More on this later. First, lets set up a quick virtual race.

Virtual Race Setup

The virtual car MY_CAR comes with the VR-II as the editable car with parameters already specified. Go to the Car
drop down menu, select this car, and click [Edit Car Parameters]. All you have to do is change the name to MY_CAR-4
and  save as in Fig 1. Then change number of wheels touching the track (NK) to “3" and rename the car MY_CAR-3
and save as in Fig2. So now we have two identical cars except one has a raised front wheel that does not roll.

http://www.pinewoodderbyphysics.com/pdf%20files/Lecture%2024.pdf
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Fig 3 - Track with editable parameters that comes with the
VR.

Fig 4 - Make a really long coasting run of 146 ft = 4450
cm. Then rename track and save it.

Next, select the editable track MY_TRACK_MY_CITY_C_BT. This track has a curved ramp like the Micro-Wizard
track. Then edit this track by making a really long coasting run of 146 ft which is 4450 cm. Also rename the track by
changing the old name to anything different before saving, here as track MY_TRACK_MY_CITY_C_BT_4450.

Note on the VR-II run below, the total ramp + coast run = 1.00. Here, the coast is much longer than the ramp, with ratio
4450/456.419, so the coast is about 90% of this unitary distance and the ramp only about 10 %. The cars remain the
same size, but their horizontal size relative to the track is correct only when the coast is the usual 13 ft = 396.24cm. So
instead of having a tiny car size, we just allow the front bumper to track the correct motion in real time. Click on video.

 

Fig 5. Video of the Race between the N = 4 and N = 3 wheeled cars. The cars appear jumpy because of the video
storage size limit and will run much smoother on the actual VR-II program. Note the car separation red curve.
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Fig 6 - Forces and dimensions associated with a wheel.

Fig 7 - Forces associated with entire body plus wheels system.

Analysis of Motion

Here we analyze the motion to see why the 4-wheel rolling car overtakes the 3-wheel rolling car on a long coasting
run. The analysis is stepwise and straightforward and reading it takes less time than doing your income tax. The units
will be left out to simplify the analysis. The units for all parameters are those given in Figs 1 through 4. To follow the
discussion, understand what each step shows before moving on to the next step. Basically, what we are doing first is
naming all the forces acting on a car body plus wheels and also naming all its dimensions. Once we have all forces
defined, we shall then use Newton’s second law to bring them together. We can then compare the deceleration of a
4- wheel car to a 3-wheel car. You may skip the math detail if you wish and go directly to the Discussion of Results.

Wheel Specifics

We first will look at a single wheel as in Fig 6. We have a wheel radius called RW with a bore hole radius essentially
that of an axle radius, RA. The wheel is of mass m and rolling as driven by the axle with a velocity v. There is a
weight W from a fraction of the body mass
that presses down through the axle onto the
bottom surface of the wheel bore hole. This
weight, plus the weight of the wheel, are
then supported by the track surface at point
P. We will now make a very important
point, namely that a wheel that rolls
without sliding rotates in direct proportion
to the distance traveled. Thus, as shown in
Fig 6, if the wheel contact point is rolled
from Q to P through an angle �, the curved
arc distance is defined as RW � provided the
angle � is measured in radians (where 180o

= 3.1416 (�) radians). Since there is no
slipping, this arc distance is precisely the
forward distance s, so that we can write 

 s = RW � (1)

System Forces
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Fig 8 - Forces where wheels tend to drag against track because of axle/bore friction.

Ma � �NFW � FAir . (2)

I� � RW FW � RA FA . (3)

Rw � � a giving � �
a

Rw
(4)

I
RW

a � RW FW � RA FA . (5)

Fig 7 shows the forces on the entire moving system, comprised of both body and wheels. There are decelerating
(negative) forces composed of air drag and wheel/axle friction. The air drag is the sum of air drag on the body and air
drag on all 4 wheels. The force FAir represents the net air drag as one force acting on the entire moving system. And
the number of wheels touching, N, times the force FW on such a wheel, gives the net friction drag against the track.

The wheel/axle friction
force was shown in more
detail earlier in Fig 6,
where the rotating wheel
bore surface rubbing
against the underside of the
axle causes a tangential
internal force against the
bore surface shown as FA.
This force is countered by a
backward force FW at the
contact point between the
wheel and track surface. In Fig 8 we present a view of the underside of a “glass” track where we see the ‘footprints’
where the wheel tread touches the track surface. The drag force FW on each wheel is shown. Next, we need to set
up Newton’s second law of motion relative to the forces on the moving system as given in  Fig 7.

 System Acceleration

Newton’s second law states that the total moving mass M (body plus wheels = 141.75 grams = 5 oz) times its
acceleration a is equal to the total forces acting on M. Thus, from Fig 7,

Note the drag forces act to the left in the negative direction so the acceleration is actually negative, sometimes called
“deceleration.” Now this equation accounts for all the mass, body and wheels, moving in translational (non-
rotational) motion. But rotational motion must also be accounted for, so we must apply Newton’s 2nd law to this type
motion as well. This law would then read “ a rotating mass with a moment of inertia I times its angular acceleration
� is equal to the total torque acting on this mass. Recall that torque is a force applied perpendicular to a radius a
certain distance from a rotation spin axis and is equal to the force times the application radius. Thus, the wheel of
Fig 6 according to Newton’s 2nd law would read as an equation

Here, I is the moment of inertia of the wheel and � is the angular acceleration of the wheel. It is important to note that
the angular acceleration of the wheel is proportional the translational acceleration of the whole car. Recall equation
(1) which stated  .  Thus the wheel radius RW times the rate of change of the angle � must equal the rate ofRw � � s
change of the track distance s. Another was to say this is the wheel radius times its angular spin velocity must equal
the velocity down the track. Also, RW times the rate of change of the angular velocity, which is the angular acceleration
�, must equal the rate of change of the velocity down the track, which is the acceleration a of Eq (2).  Therefore

 Thus, substituting the above value for �,  Eq (3) can be written
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FW �
1
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FA �
µ
N

(M � Nm)g , (10)

a � �
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�
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Solving Eq(5) for the frictional drag FW on each wheel, we have

Putting this value for  FW into the system acceleration Eq (2) gives

Next, rearrange terms in Eq (7) to get the acceleration a on the left,

Then, divide both sides of Eq (8) by the parenthetical coefficient of a to get a in terms of measurable quantities

Now the sliding friction force FA of the axle against the inside bottom surface of the wheel bore is the weight W
(see Fig 6) pressing the axle down times the coefficient of sliding friction µ. The N wheels touching, each of mass
m, are self-supporting, so the net mass supported by N axles is (M - N m ). Multiple by g to convert this mass to a

weight force. Then suppose for the time being that each of N wheels touching supports  of the total body weight1
N

(M - N m )g pressing down. Then on each rotating wheel bottom bore surface we would have a frictional drag force

so that Eq (9) becomes

The N =4 Case

First we will consider the N = 4 case, where all 4 wheels touch the track and rotate (N = 4, called NK in Fig 1 &
2), in which case the body mass supported by axles is the total mass M less the self-supporting wheels, each of mass
m.  So the total weight force W as shown in Fig 6 is W = (M - 4m )g. Next, insert the actual numbers from the Fig
1 body shop edit box to obtain the acceleration, called a4, for the N = 4 case 
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a4 � �

0.1 0.118
1.511

[141.75 � 4(3.84)979.27]

141.75 � 4 5.566

1.5112

�

FAir

141.75 � 4 5.566

1.5112

. (12)

a4 � �6.3799 �

FAir

151.506
. (14)

a4 � �
7.6475(126.39)

151.506
�

FAir

151.506
. (13)

FAir �
1

2
CD AP�v 2

2 � (0.5) (1.000) (18.673) (0.001225)(449.18)2
� 2307.62 (15)

a4 � �6.3799 �
2307.62
151.5056

� �6.3799 � 15.232 � � 21.620 . (16)

Fig 9 - The case where one wheel is raised and only 3 wheels roll.

We now calculate the air force FAir at the start of the coast where the VR tells us the velocity v2 = 449.18, so that

The values of CD and AP above come from Fig 1, where AP = Area of Body + 4 x Area of one wheel.  Also the air
density � comes from the Track Parameters Edit box. The net deceleration (negative acceleration) becomes

 The N = 3 Case

Next, as shown in Fig 9,
consider only 3 wheels touch
the track and rotate (N = 3). If
the right front wheel is raised,
the other 3 wheels will
support the entire system
provided the center of mass
lies withing the triangle with
apexes  l y ing  a t  the
wheel/track contact points.
In this case the body mass
supported is the total mass M
less the 3 self supporting
wheels, each of mas m.  So
the total weight force pressing
down on the 3 rotating wheel
axles is W = (M - 3m)g.
Suppose that each wheel
supports 1/3 of this total
weight, then on each wheel 

. When these values are put into Eq (11) we have the following equation for the net coastingFA �
µ
3

(M � 4m )g

acceleration a3,
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a3 � �

0.1 0.118
1.511

[141.75 � 3(3.84)979.27]

141.75 � 3 5.566

1.5112

�

FAir

141.75 � 3 5.566

1.5112

. (17)

a3 � �
7.6475(130.23)

149.064
�

FAir

149.064
. (18)

FAir �
1

2
CD AP�v 2

2 � (0.5) (1.000) (18.673) (0.001225)(452.46)2
� 2341.40 (19)

a3 � �6.6813 �
2341.40
149.064

� �6.6813 � 15.708 � � 22.389 . (20)

Table 1 - The initial coast deceleration of the N = 4 and N = 3 Cars

Friction Drag Initial Air
Drag

Net Initial
Deceleration

N = 4 Car 6.3799 15.232 21.620

N = 3 Car 6.6813 15.708 22.389

Difference 0.3014 0.476 0.769

% Difference 4.8 3.1 3.6

Again, getting the velocity v2  of the N = 3 car from the VR-II [Run] screen, we have the air force given by

Discussion of the Results

Table 1 summarizes the results. Both
initial air drag and frictional drag are larger
for the N = 3 car. The larger air drag is
totally a consequence of the higher
velocity of the N = 3 car at the start of the
long coasting run because projected area
AP doesn’t change. But air drag falls off as
the square of the velocity, and the air drag
force becomes smaller fairly quickly.

The wheel/axle frictional drag is constant throughout the coast and the  N = 3 car shows 4.8% more deceleration than
the N = 4 car. The bottom line is that the N = 4 car, although falling behind during the ramp acceleration, immediately
at coast start begins a velocity increase relative to the N = 3 car. On a short standard horizontal run of 16 to 32 feet, only
a small amount of the velocity difference is made up, and N = 3 wins. But at about half way on a 146 ft coast run, the
N = 4 car begins to gain on the N = 3 car, and at 146 ft (4450 cm) the N = 4 will pass N = 3.

The largest effect is the frictional change. Note that when one front wheel is raised, it increases the net mass and weight
that must be carried by the other 3 axles. See in Eq (13) the 126.39 for N = 4 where in Eq (18) it is 130.23 for N = 3.
This amounts to 3% of the 4.8 % in Table 1. Earlier we said suppose 1/N of the total body weight is supported by each
of N wheels rolling. But remember that the distribution of a fixed amount of weight amongst the supporting axles/wheels
really does not affect the overall frictional drag. This was shown in Lecture 11, where a car with from 6 to 3 wheels
rolling still  had the same frictional drag. What happens here is that when the same net weight must be carried by 3
instead of 4 wheels, the pressure of the axles on the bores of the 3 wheels increases their frictional drag just enough to
keep the total drag constant. But when a 4th formerly self-supporting wheel is raised it adds to the net weight that
must be supported by the other 3 and thus increases net frictional drag (One website claims a raised wheel causes
less overall friction).

Also, note that the denominator in Eq (13) is larger than the denominator in Eq (18). This denominator represents the
inertial effects of mass that tend to overcome drag deceleration. As an example, a gallon bottle 50% full of water will
fall slower in air than the same bottle full of water. As shown in Lecture 1b, the less mass means more air deceleration.
Because the wheel rotation inertia also counts as mass inertia, its addition also increases deceleration, here by 1.8%.

http://www.pinewoodderbyphysics.com/pdf%20files/Lecture%2011.pdf
http://www.pinewoodderbyphysics.com/pdf%20files/Lecture%201b.pdf
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Fig 10 - Using the [Display Results] feature of VRII and Excel to examine coast
accelerations.

Fig 10 shows deceleration for
a 4-wheel and a 3-wheel car
in 3 different cases. The
bottom comparison shows the
net initial deceleration at the
start of coast as just discussed
in Table 1. Also shown is the
case where the air drag
coefficients CW, CB are set to
zero but the friction
coefficient is left at 0.1, and
the case where CW, CB are
left at 1.0 and the friction
coefficient MU is set to zero.
The 1.0 air drag is about twice
as much as on an ordinary
PWD car, and represents just
an unstreamlined square body
block. The curves were
generated in an Excel
spreadsheet by using the new
[Display Results] feature in
VR-II that contains both
tables and graphs of any
single car virtual race. The acceleration during the 16 feet or so of ramp travel starts out pretty high at about +450
cm/s2.  Both cars have the same potential energy at the race start, but the 4-wheeled car must store more of this
energy as rotational compared to the 3-wheeled car. So the larger translational energy of the 3-wheeled car will put
it ahead at the end-of-ramp (EoR). But as soon as the coast starts, the stored rotational energy begins to be converted
to translational. The 4-wheeled car has more stored rotational energy and the coast advantage of less deceleration
and can thus eventually overtake the 3-wheeled car.

In practice, it is unlikely that any 4-wheel car can have its weight continuously supported by 4 wheels. The coasting
track surface is not flat to within a few thousandths of an inch, and at any given instant the car will be supported
momentarily by only 3 wheels according to the plane they determine. Because of usual rear wheel weighting, the
two rear wheels will always be in firm rolling contact.  The two front wheels will thus alternate between which one
carries the front load depending on the flatness of the track encountered. But, for all practical purposes, the
momentary contact of one or the other front wheels will keep the rotation of both about the same as if they
continually touched. 

The 4-wheel car overtaking the 3-wheel car is based on the same physics as a heavy-wheeled 3-wheel car
overtaking a light-wheeled 3-wheel car. So the lighter wheels are in great demand. But they don’t always provide
an advantage. The Crossroads of America Council of the BSA during a Spring 2009 event advertised “The Indiana
State Museum’s Fantastic Pinewood Derby Track Will be Ready and Rigged for Action. It is 120 feet long!”  There
was some confusion there when the light-wheeled cars suffered defeat when racing against ordinary heavy-wheeled
cars.

In this lecture, some applied physics and calculation math detail was included so the reader could appreciate that
the little Pinewood Derby car physics can be fairly complicated, yet the Virtual Race program does literally
hundreds of calculations more complicated than this every few microseconds when it is running. 


